Models of measurement for quantum fields and for classical continuous random fields
نویسنده
چکیده
A quantum field model for an experiment describes thermal fluctuations explicitly and quantum fluctuations implicitly, whereas a comparable continuous random field model would describe both thermal and quantum fluctuations explicitly. An ideal classical measurement does not affect the results of later measurements, in contrast to ideal quantum measurements, but we can describe the consequences of the thermal and quantum fluctuations of classically non-ideal measurement apparatuses explicitly. Some details of continuous random fields and of Bell inequalities for random fields will be discussed.
منابع مشابه
A Non-Demolition Photon Counting Method by Four-Level Inverted Y-Type Atom
The semi-classical model of atom-field interaction has been fully studied for some multilevel atoms, e.g. Vee, L, Cascade X , Y, and inverted Y and so on. This issue is developed into the full-quantum electrodynamics formalism, where the probe and coupling electromagnetic fields are quantized. In this article, we investigate the full-quantum model of absorption and dispersion spectrum of trappe...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملAnalysis of Birth Spacing Using Frailty Models
Background and objectives: Birth spacing is an important variable for identification of fertility acceleration, total fertility rate, and maternal and fetal health. Therefore, special attention has been paid to this issue by researchers in the fields of medical sciences, health, and population. In addition, proper analysis of this concept is of foremost importance. Application of classical anal...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کامل